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TOROIDAL MAPS WITH PRESCRIBED TYPES OF VERTICES
AND FACES

D. BARNETTE, E. JUCOVIC Anp M. TRENKLER

1. Introduction. Let a 3-connected graph G be embedded in an orientable
surface of genus g in such a way that the connected components of its complement
in the surface are topological discs. We denote by v,(G) the number of k-valent
vertices of G and by p,(G) the number of k-gonal faces of the map defined by the
embedded graph. For the numbers v,(G) and p,(G), it follows from Euler’s formula
that

@G -pG)+ T @ -k u(G) =8(1—-g). (1
K53 )

Since Y53 kp(G) and 3,5 ; kv, (G) equal twice the number of edges of G, both
these numbers are even and so of course are the numbers =3 kp(G) and
k#4
Y>3 kv (G). However, the converse of (1) and of the statement just mentioned does
k4
not hold. We are as yet far from knowing the answer to the general question: Given

sequences p = (P, Ps, ..., P) and v = (v3, vs, ..., v,) satisfying

I G—Rp+ T G-k = 8(1 - g), @
and
> kpi, ¥ kv, are even, 3
K3 k=3

for what numbers p,, v, does there exist a graph G embedded in a surface of genus
g for which p,(G) = p, and v,(G) = v, (k = 3) holds?

Only the following result was published (Griinbaum [2]; for references on this
and related problems, see Griinbaum [1;3], Griinbaum—Shephard [4]). Given
sequences p = {p;} and v = {v;}, satisfying (2) and (3) with g = 0, there exists a
graph G embedded in the sphere such that p,(G) = p; and v,(G) = v; (i = 3, i # 4).
(Such sequences are said to be realizable on the sphere.) The aim of the present
paper is to prove an analogous statement for g = 1 (the torus). Although some
ideas of Griinbaum [2] are employed the procedure of our proof differs from his.
Our result is contained in the following

THEOREM. For any pair of sequences p = (ps,ps,...) and v = (v3, U3, -..),
satisfying (2) and (3) with g = 1, a map M on the torus redlizing them exists, if, and
only if, the pair p and v is different from p = (1,1,0,0,...) and v = 0,0,..) or
p=(0,0,..)and v = (1,1,0,0,...).

2. Proof of the Theorem. First we prove the non-existence of a map on the
torus with a regular quadrivalent graph having one triangle (and one pentagon) only.
Let G be a 4-valent graph embedded on the torus. An edge bc is a direct extension
of an edge ab if the other two edges meeting b liec on opposite sides of the path abc.
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A path A; A, A5 ... A, is a geodesic arc if the edge A; A, is a direct extension of
the edge A;_, A;; it is a closed geodesic if 4, = Ay, and A4, A, is a direct extension
of A,_{ A.

Suppose p;(G) = ps(G) =1, p(G) =0 for i > 5, v,(G) = 0 for i # 4, for
the map on the torus defined by the graph G. Take a simple closed curve I' in G
which is a geodesic arc. From Griimbaum [1], p. 239-241, it follows that, if I" bounds
a topological disc D, then there are at least two triangles of G in D.

, . N Fig. 1 Fig. 2

Let the geodesic arc I" not bound a topological disc. We can cut the torus apart
along I" and obtain an annulus A. Let the inner boundary (see Fig. 1) of the annulus
be C, and the outer boundary be D,. The number of cases which must now be
considered is large. We shall treat only some of them, the remainder being left to
the reader.

Case 1. C; is not a closed geodesic, i.e. one vertex of C; meets three faces in 4,
and one vertex of D, meets only one face in A.

We consider the faces in the annulus meeting C;. If they are all 4-sided then
these 4-sided faces meet another closed curve that is a geodesic, which we shall call
C,. (See Fig. 2.)

If all faces that meet C, and are between C, and D, are 4-sided then these faces
determine a third geodesic C;. We continue this argument until we reach a geodesic
C, that meets either a pentagon or a triangle. We now do the same with faces meeting

X

D m

Fig. 3
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D,, finding successive geodesics D; until one of them, D,, meets a pentagon or a
triangle.

Case 1a. A pentagon meets that vertex X in the annulus A’, bounded by D,, and
C,, which meets only one face in A’. All other faces meeting D,, are 4-sided. (See
Fig. 3.)

These faces will determine a closed geodesic E in A’. We now turn to C, which
must meet the triangular face.

Eh’

Ca

Fig. 5

Case 1a;. The triangle meets C, as in Fig. 4. All other faces meeting C, will
be 4-sided. These faces will determine a closed geodesic E’ between C, and D,. All
other faces of G are 4-sided and form concentric “rings ** around E’. We now reach
a contradiction because E has fewer vertices than C,, and when we add concentric
rings of 4-sided faces around E’ this number of vertices remains the same thus E and
E’ have the same number of vertices. This, however, implies that D, has more vertices
than C,.

4=V, Aq-1 Vs Vs BaU,_, =V
Uy = Ay P,
4] N ¢
> d+2 A U3
Visz |Q | ? .
T 1 A; = U,
I
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[
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1 1 Ay =Uy
C V° Vi Aw = Vo

Fig. 6
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Case la,. The triangle has an edge on C,. (Fig. 5). All other faces meeting C,
will be 4-sided, thus these faces will determine a closed curve, E"', composed of two
geodesic arcs. The other 4-sided faces again form concentric “rings” around E".
The outer boundaries of each of these rings will be closed curves consisting of two
geodesic arcs. This means that E consists of two geodesic arcs instead of one which
is a contradiction.

There are several other cases, all depending on the placement of the pentagon and
triangle. The proof becomes tedious and requires repeated applications of the kinds
of arguments in cases 1a, and la,.

Case 2. C,isaclosed geodesic. This case reduces to Case 1 as soon as a triangle
or a pentagon occurs in the annulus,

The non-realizability on the torus of the sequences p = (0,0,...),
v = (1,1,0,0,...) follows now by duality from the considerations above.

To prove the sufficiency of the conditions mentioned in our Theorem we shall
construct for each pair of sequences p = (p3, Ps; -+ Pw)> ¥ = (¥3, s, ..., 1,) a toroidal
map realizing them.

I. Let
> @-kp=% @G-k =0
=3 K23

(a) v; = Oforalli # 4. For Y53 p = 0O the surface of a polyhedron of genus 1
which we get by joining & = 3 cut-off n-gonal prisms together is an example of a
desired cell decomposition of the torus. From now on we may assume that
23l > 1

We begin the construction with an m-gon M, m = 4 + 3,55 (k — 4)p,, with
vertices A, A, ..., 4,, with right angles in the vertices A, and Ay, d = [im] + 1

A/ B
A, B
\
"1r|* i
9 = n
N"QJ Q\ \
N 11
m+ 1 \
3
0, ™
8
S 5
5
C Ay
c A

Fig. 7
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(See Fig. 6). Let B be the point of intersection of the lines 4, A, and A, 4,_,, and
C that of 4, A; and 4, A,,,. The rays from the points A; in the direction away
from M and parallel to the line 4, C intersect the segment 4; B or 4, C in the points
U,. Analogously we obtain the points V; on the segments 4, C, BA,. Essential for
the construction is the fact that if 3,55 kp, is even then the segments A; B, CA,; or
CA,, A4 B contain the same number d—1 of vertices U; or V;. If X 55kp, is odd
then the segments A; B and BA, contain d — 1 points U; or V;, but in each of the
segments A, C, CA, there are only d—2 vertices V; or U;. In this case we add a new
edge U°Q° and a series of edges on the arc Q° VV° where the point U°, Q° or V°
lies between the point U,,, and U,,,, Uy, and Ay, or C and V., respectively
(dashed lines on Fig. 6). This operation will be called “balancing the number of
vertices . Thus all sides of the rectangle A; B 4; C have the same number of points
U,orV,

Next we cut off from the polygon M the needed k-gons. Let k be such that
pr # 0. We choose a point Q, between 4, and 4, ,,, n < d, and a point Q, between
A, and Ay, m > d, such that Q, A, A 42 ... AgAgeq ... A, Q, is a k-gon. The
point Q, is joined with a point between V, and V,,; and the point @, with a point
between V,, and V,,,; by an arc. Analogously we choose points Q5 or Q, between
A,and A, or A,and A,,;sothat Q3 A4,,1 Ay42...Q1 03 A,41...0Q4 is a t-gon
for such a t for which p, # 0 etc. (See Fig. 7). This can always be done so as to
dissect M into the desired k-gons. A little caution must be exercised in choosing
the points A,, A, 4,, A4, in order to balance up the numbers of edges of the halves
of M used. The graph we get has again the property that on opposite sides of the
rectangle A4, BA; C there are equal numbers of vertices. Along all sides of this
rectangle we add a series of quadrangles. The map we get is called the p-component
of the map to be constructed.

Fig. 8
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The last stage of the construction is obvious. Vertices on opposite sides of the
rectangle 4," B' A,/ C' are identified pairwise. First a tube is obtained and then the
vertices on its borders are identified.

(b) For some i # 4, v; # 0, and for some j # 4, p; # 0, but none of the given
sequences is of the form (1,1,0,0, ...). First the p-component is constructed as in (a).
In the same way the dual v* of the v-component of the map is constructed. It consists
of p* = v, i-gonal faces for all i > 4, and quadrangles and triangles. By dualizing
this map and by modifying the ¢ border » of that dual map we get the v-component
of our map; in Fig. 8 the dual of the map in Fig. 7 is shown. Both the p-component

Y X

r-component

p-component

Fig. 9

r-component

p-component

Fig. 10
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and v-component are joined and, if needed, supplemented by quadrangles (See Fig. 9)
s0 as to be able to perform the concluding stage of the construction as in case (a).

(c) Thecasep; = Oforallj # 4isdual to (a). First the dual v* of the v-component
is constructed.

(d) None of the sequences p, v is of the form (0,0, ...), but at least one of them is of
the form (1,1,0,0,...). The sequence (1,1, 0,...0) cannot be realized as a p- or v-
component with equal numbers of vertices on opposite sides of the rectangle, If
p=(,1,0,..,0)and v = (1,1,0,...,0) the p-component and v-component can be
joined “diagonally ™ in such a way to get, after supplementing by quadrangles, equal
numbers of vertices on opposite sides of the rectangle UV XY, (See Fig. 10).

If one of the sequences, i.e., v, is of the form (1,1,0, ...,0) then in the p-component
the operation “ balancing the number of vertices ” is performed and the joining of
the p- and v-components is performed as before.

II. Let
Z @-kp > ¥ 4=k,
K33 k=3

First we construct the p-component and the v-component realizing the sequences
P =(pssps's...,p) and v' = (vy/, 04, -, 4,) such that p;/ = p, and v,/ = v; for
all i = 5, and vy = 3.5 (k — 4)v, and p;’ = p3; — (v3' — v3) holds.

Nextvy" — vy trivalent vertices in the s-component must be changed into triangles.
Notice that v;" — v; = d is always even because Yizs ko as well as 355 ko, is
even; therefore we can construct rays from 4d trivalent vertices going to one border
of the v-component changing these vertices into 4-valent ones and forming one
triangle (and possibly quadrangles) each. The same can be done with 1d trivalent
vertices lying ““on the other side ” of the v-component so as to get equal numbers of
vertices on opposite borders of the v-component. (See Fig. 11, where 4 trivalent
vertices are changed into triangles.) The concluding stage of the construction, i.e.
forming the tube etc., can now be performed as in part L.

III. The case
Z, @-bp < T @=hy,

is settled by dualization from the case II. The proof of the Theorem is finished.

/ /
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Fig. 11
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Remark 1. The construction used in the proof of our Theorem is applicable,
with few changes, for maps on the sphere too. As above we construct the map on the
“tube” realizing sequences p’ = {p/}, v' = {v/'} such that py’ < ps, 05 < 3,
p/ = pi, v/ = v;foralli > 5holds, and Sisa @ —=i)(p/ +v/) = 0and X3k,
¥,.» 3 kv, are even. The openings of the tube are closed by one of the maps on Fig. 12
or their duals. In general for the map M, which we obtain by such a construction,
the number p,(M) + v4(M) is smaller than that obtained by the comstruction in
Griinbaum [2]. There are some sequences for which this procedure does not work.
The graphs of these maps are those in Fig. 13 (the dashed edges are added successively
to increase the number of trivalent vertices) and Fig. 14, or their duals.

Remark 2. The non-existence of the decomposition of an annulus A treated in
the first part of the proof of the Theorem was proved independently by W. Meyer
(letter dated May 1970). J. Zaks has found a construction, different from ours,
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proving the existence of a quadrivalent toroidal map realizing any sequences p, v
satisfying (2) and (3) with v; = 0 (i # 4), different from p = (1,p,,1,0...) (letter
dated February 1970).

Remark 3. If we are given sequences {p;}, {v;} with all p; and v, even satisfying
(2) and (3) with g = 0, we can use the following construction to obtain a centrally
symmetric 3-polytope realizing {p;}. {v;}. Let p;’ < ps, v5’ < v, be integers such that
Py’ + vy’ = 8 and py/, v;’ = 0mod 4 holds. On a face F of a cube draw the p- and
v-components realizing p’ = (3(p; — p3'), 1ps, ...), v = (33 — v3'), 4vs, wae: NEXE
we project this configuration through the centre of the cube onto the opposite face.
On a face adjacent to F draw that one from among the graphs on Fig. 12 or their
duals which has p,’ triangles and v’ trivalent vertices. Then project this graph in the
same manner through the centre of the cube. Further, we add edges across the
remaining two faces to get only quadrangles on them, and 4-valent vertices on the
edges of the original cube. To get a centrally symmetric polytope with this con-
figuration of faces we use Griinbaum’s theorem which characterizes the graphs of
centrally symmetric polytopes [1; p. 245].

It appears that this construction will work unless v5 + ps = 2 and vy + p; = 10
holds. In fact in these cases we are forced to place on the face F of the cube one
pentagon (or a S-valent vertex) and one triangle (or a trivalent vertex) which cannot
be done so as to get equal numbers of vertices on opposite borders of F. In the
other cases these difficulties do not occur.

The above argument gives an almost complete answer to Griinbaum’s [1; p. 269]
conjecture concerning the realizability of sequences by 4-valent centrally symmetric
3-polytopes.
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